Steady-state EB cap size fluctuations are determined by stochastic microtubule growth and maturation.
نویسندگان
چکیده
Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability. Here we have quantitatively characterized the properties of cap size fluctuations during steady-state growth and have developed a theory predicting their timescale and amplitude from the kinetics of microtubule growth and cap maturation. In contrast to growth speed fluctuations, cap size fluctuations show a characteristic timescale, which is defined by the lifetime of the cap sites. Growth fluctuations affect the amplitude of cap size fluctuations; however, cap size does not affect growth speed, indicating that microtubules are far from instability during most of their time of growth. Our theory provides the basis for a quantitative understanding of microtubule stability fluctuations during steady-state growth.
منابع مشابه
Microtubule catastrophe from protofilament dynamics.
The disappearance of the guanosine triphosphate- (GTP) tubulin cap is widely believed to be the forerunner event for the growth-shrinkage transition ("catastrophe") in microtubule filaments in eukaryotic cells. We study a discrete version of a stochastic model of the GTP cap dynamics, originally proposed by Flyvbjerg, Holy, and Leibler [Phys. Rev. Lett. 73, 2372 (1994)]. Our model includes both...
متن کاملThe size of the EB cap determines instantaneous microtubule stability
The function of microtubules relies on their ability to switch between phases of growth and shrinkage. A nucleotide-dependent stabilising cap at microtubule ends is thought to be lost before this switch can occur; however, the nature and size of this protective cap are unknown. Using a microfluidics-assisted multi-colour TIRF microscopy assay with close-to-nm and sub-second precision, we measur...
متن کاملEvolving Tip Structures Can Explain Age-Dependent Microtubule Catastrophe
Microtubules are key structural and transport elements in cells. The dynamics at microtubule ends are characterized by periods of slow growth, followed by stochastic switching events termed "catastrophes," in which microtubules suddenly undergo rapid shortening. Growing microtubules are thought to be protected from catastrophe by a GTP-tubulin "cap": GTP-tubulin subunits add to the tips of grow...
متن کاملMicrotubule dynamics: Caps, catastrophes, and coupled hydrolysis.
An effective theory is formulated for the dynamics of the guanosine triphosphate ~GTP! cap believed to stabilize growing microtubules. The theory provides a ‘‘coarse-grained’’ description of the cap’s dynamics. ‘‘Microscopic’’ details, such as the microtubule lattice structure and the fate of its individual tubulin dimers, are ignored. In this cap model, GTP hydrolysis is assumed to be stochast...
متن کاملConcerning the efficiency of the treadmilling phenomenon with microtubules.
Radioactive tubulin subunit incorporation into porcine and dogfish shark brain microtubules which are at steady state has been found to result primarily from a diffusional reaction, in which subunits are incorporated although there are an equal number of tubulin subunit additions to and losses from each of the two microtubule ends in a unit of time. Treadmilling is very inefficient, and the Weg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 13 شماره
صفحات -
تاریخ انتشار 2017